Researchers from the University of Georgia and the Mayo Clinic in Arizona have developed a vaccine that dramatically reduces tumors in a mouse model that mimics 90% of human breast and pancreatic cancer cases—including those resistant to common treatments. The vaccine reveals a promising new strategy for treating cancers that share the same distinct carbohydrate signature, including ovarian and colorectal cancers.
“This vaccine elicits a very strong immune response,” said study co-senior author Geert-Jan Boons, Franklin Professor of Chemistry and a researcher in the UGA Cancer Center and its Complex Carbohydrate Research Center. “It activates all three components of the immune system to reduce tumor size by an average of 80%.”
The researchers used unique mice developed by Sandra Gendler, Grohne Professor of Therapeutics for Cancer Research at the Mayo Clinic and co-senior author on the study. Like humans, the mice develop tumors that overexpress a protein known as MUC1 on the surface of their cells. The tumor-associated MUC1 protein is adorned with a distinctive, shorter set of carbohydrates that set it apart from healthy cells.
“This is the first time that a vaccine has been developed that trains the immune system to distinguish and kill cancer cells based on their different sugar structures on proteins such as MUC1,” Gendler said. “We are especially excited about the fact that MUC1 was recently recognized by the National Cancer Institute as one of the three most important tumor proteins for vaccine development.”
Gendler pointed out that MUC1 is found on more than 70 percent of all cancers that kill. Many cancers, such as breast, pancreatic, ovarian and multiple myeloma, express MUC1 with the shorter carbohydrate in more than 90 percent of cases.
She explained that when cancer occurs, the architecture of the cell changes and MUC1 is produced at high levels, promoting tumor formation. A vaccine directed against MUC1 has tremendous potential, Gendler said, as a preventative for recurrence or as a prophylactic in patients at high risk for particular cancers. A vaccine also can be used together with standard therapy such as chemotherapy in cancers that cannot be cured by surgery, such as pancreatic cancer.
Boons’ vaccine is fully synthetic, meaning that its components can be manufactured in a lab with assembly-line precision. The vaccine consists of three components—an immune system booster known as an adjuvant, a component that triggers the production of the immune system’s T-helper cells, and a carbohydrate-linked peptide molecule that directs the immune response to cells bearing MUC1 proteins with truncated carbohydrates.
Boons, Gendler and their colleagues are currently testing the vaccine’s effectiveness against human cancer cells in culture and are planning to assess its toxicity. If all goes well, they anticipate that phase I clinical trials to test the safety of the vaccine could begin by late 2013.
Source: University of Georgia